Ultrasonography of Shoulder in Dropped Iditarod Sled Dogs

LTC Clint George, DVM, DACVPM
US Army
UGA Radiology Resident

Funded by Army Research Office
and
Defense Advanced Research Projects Agency
Research Team Members

CoPI - Clint George, DVM Dipl. ACVPM (Radiology Resident)
CoPI - Scott Secrest DVM Dipl. ACVR
Mike Davis, DVM Dipl. ACVIM, ACVMSR
Dirsko von Pfeil, DVM Dipl. ACVS, ECVS, ACVMSR
William Liska, DVM Dipl. ACVS
Stu Nelson, DVM (Chief Veterinarian, Iditarod Trail Race)

Receiving team/major supporting roll:
SFC Thom Sager
Dr. Erika Friedrich
Objectives

- Ultrasound – How it works
- Canine shoulder anatomy
- Shoulder Ultrasonography
- Iditarod study
Ultrasound – How it works

• Ultrasound imaging, also called sonography, involves using a probe (transmitter and receiver) to send high frequency sound waves into the body and record the reflection of the sound waves to produce a multidimensional image on a computer monitor.
Other examples

• Imagine how a bat or a dolphin utilizes ultra high frequency to “See” (echolocation)
• Sonar from a submarine
Pros and cons

- Increased resolution
- Non invasive
- Real time (instant)
- Dynamic (motion)
- Assess blood flow
- Cost effective
- Minimal sedation

- Limitations due to operator experience and artifacts.
Ultrasound and Anatomy Definitions

- Attenuation – the amount of signal that is absorbed or reflected
- Hyperechoic – tissue that is brighter (white) on the monitor
- Hypoechoic – tissue that is darker (grey to black) or absent
- Sagittal – lengthwise
- Transverse – cross section
- Origin – where the tendon or ligament begins
- Insertion – where the tendon or ligament ends on a bone
Normal Canine Shoulder Anatomy

- **Supraspinatus**
 - Origin - supraspinous fossa
 - Insertion – greater tubercle

- **Infraspinatus**
 - Origin - infraspinous fossa
 - Insertion – minor tubercle

- **Teres minor**
 - Origin – infraglenoid tubercle
 - Insertion – greater tubercle

- **Biceps brachii**
 - Origin – supraglenoid tuberosity
 - Insertion – ulnar and radial tuberosity
Normal Canine Ultrasonographic Anatomy - Supraspinatus

Greater Tubercle

Supraspinatus

Scapula
Normal Canine Ultrasonographic Anatomy - Biceps

Supragenoid tuberosity

Biceps

Biceps

Humerus
Transverse images biceps

Biceps

Bicipital groove

Biceps muscle and tendon
2017 Iditarod Study

• Suspected to find chronic changes in all dropped dogs.

• Suspected to see acute on chronic changes such as rupture or partial tear with mineralization (periarticular and periosteal).

• A large athletic population with reported abnormalities and a similar control group
2017
Iditarod Objectives

• To identify, describe, and quantify ultrasonographic abnormalities of the shoulder in dropped sled dogs.
• Identify and document shoulder instability in dropped sled dogs.
Materials and Methods

• Dogs were enrolled if:
 – Mushers consent
 – Dogs were dropped

• Dogs were excluded if:
 – System illness
 – Unstable or unfit for sedation

• An orthopedic exam (boarded surgeon) determined whether dropped dogs had lameness or pain associated with the shoulder.
Materials and methods

- LOGIQ e Vet NEXTGen
- L10-22-RS High Frequency Linear Transducer
- Preparation of the shoulder
- Described and quantified ultrasonic abnormalities of the shoulder
Materials and methods

• Abduction angles under sedation was needed to rule out instability.
• Recovered and released once stable
Results

- 65 Total dogs (130 total shoulders)
 - 41 control (dogs w/out lameness)
 - 24 study (dogs w/ lameness)

- Dog demographics
 - Alaska husky (20-25kg)
 - Good appetite, good feet, love to run
 - 68% male
 - 434 average miles
 - Min 161 / max 808
 - 68 hr average delay between dropped and US exam
 - Min 12 hrs / max 120 hrs
Results

• 65 dogs
 – 24 of these were diagnosed w/ shoulder abnormalities by field vets or mushers
 – 24 dropped dogs received analgesics

• Orthopedic exam
 – 31 shoulder abnormalities or 24 dogs (37%)
 – But, the field vets only agreed with the Surgeon 38% of those dogs
 – 9/24 dogs received analgesics
Results

- Ultrasonography
 - 24/23 (96%)
 - We found an additional 35 dogs
 - Total 58 dogs or 107 shoulders
 - 24/58 (41%)
 - 31/107 (29%)
 - 95 were biceps abnormalities (89%)
 - Mineralizing biceps tenosynovitis in 18 shoulders (14 dogs) indicating chronic and or prior disease
 - No teres minor abnormalities

- Instability of any shoulder was not identified
- Acute rupture or tear was not identified
Infraspinatous Abnormalities

Infraspinatous

Mineral

Fluid

Infraspinatous
Discussion

• **Biceps abnormality**
 – Fluid around the biceps was the most common
 – Normal physiologic response for prolonged endurance
 – Or a true inflammatory condition
 – Harness rub
Discussion

• Discrepancies in findings b/w field vets, orthopedic exam, and US exam
 – Field vet lack of experience and/or limitations
 • Time, environment, knowledge
 – Time delay from time of being dropped to exam
 • Rest
 • Decreased inflammation
 • Elbow disease masking lameness
 – Analgesics
 – Field vets may have identified lameness
Limitations

- Time delay from being dropped to US exam
- As per Iditarod regulations and requirements, dogs dropped for lameness were given analgesics at dropped checkpoints
- Physical exam found lameness localized to the triceps (of which we did not examine)
- Lack of cytology/histopathology
Conclusion

• The most common US abnormality – fluid surrounding biceps
 – Follow on study
• There is no evidence of acute rupture or tear
• No shoulder instability identified
• A low incidence of chronic or prior abnormalities on US
Thank you and Questions
References

• Corey R, Cook C, et al. Diagnostic sensitivity of radiography, ultrasonography and magnetic resonance imaging for detecting shoulder osteochondrosis/osteochondritis dissecans in dogs. Vet Radiol Ultrasound 2014;56:3-11