The chemistry of odor and odor detection

Lauryn DeGreeff**, NRL Code 6181
Kimberly Peranich, NSWC IHEODTD

Naval Research Laboratory; Washington, DC
IWDC 2017; Banff, AB, Canada
Canine as a Detector

Canine = *field detector*

- **Sampling** = *sniff*
- **Pre-concentration** = *nasal cavity*
- **Detection** = *olfactory nerves*
- **Discrimination** = *olfactory bulb*
Strengths and limitations of the canine detector

• **Strengths**
 - Sensitivity
 - Generally unmeasured, but considered to be below the detection limits of most instruments*
 - Selectivity
 - Ability to “see” unique odor signature and ignore background
 - Ability to follow scent to source

• **Limitations**
 - Lack of standardization and calibration
 - Odor targets to many analytes unknown

*Estimated LOD for nitromethane in ppt range – Kurry et. al., 2003
Strengths and limitations of the canine detector

• Strengths
 • Sensitivity
 • Selectivity
 • Ability to follow scent to source

• Limitations
 • Lack of standardization and calibration
 • Odor targets to many analytes unknown

➢ Research should be carried out to improve canine efficiency, training, and acceptance in the scientific community
Odor Detection: Defined

• **Odor detection** = vapor sampling/analysis
 • Volatile organic compounds (VOCs) from scent object are released into the environment → detected

• **Odorant** = analyte to be detected
 • VOC that gives off an odor

• **Odor profile** = Unique group of odorants associated with object of interest
Odor Detection Challenges

• Target compound may have low volatility
 • Low concentration of target available in headspace
 • Ex. TATP >> TNT > PETN / RDX > HMTD (?)

• Odor profiles may change with time / environment
 • Changes due to temp / humidity (i.e. increased /decreased volatility)
 • Changes due to degradation

• Odor profiles may be complicated
 • May contain many components ➔ which ones are unique/important?
 • Ex. Human remains, some drugs / explosives
Odor Detection Challenges

• All of these challenges are complicated by field conditions
 • Sensitivity issues due to dilution in air
 • Also burial, wrapping, etc.
 • Selectivity issues due to background odors
 • Inability to control environmental conditions
 • High/low temp or humidity
 • Rain
 • Sunlight (photochemical changes)
Odor Profiles

• Low volatility explosives
 • Challenges:
 • Minimal availability of parent compound
 • Real-world sampling conditions compound difficulties
 • Utilize whole odor profile:
 • Canines utilize the whole odor profile instead of parent compound alone
 • Detect the most unique and abundant volatiles associated with parent compound
 • Maximizes sensitivity and selectivity
• Researchers should understand odor profile of target compounds
 • Improve training / training aids
 • Enhance scientific understanding of canine abilities
Odor Profiles

• Odor profile = collection of odorants that make up the *unique* odor a target object

• Canines do not necessarily alert to the parent
 • Examples:
 • TNT \rightarrow 2,4-DNT
 • Cocaine \rightarrow methyl benzoate

![Headspace of TNT](image1.png)

![Headspace of cocaine](image2.png)

Courtesy of Dr. Kenneth Furton and Dr. Michael Macias
Odor Profiles

- Odor profiles of some profiles are simple (single component)
 - Example: TNT → 2,4-DNT
- Others are more complicated with many components composing the odor profile
 - Example: marijuana

Odor profiles: Living vs. deceased human odor humans

Volatile compounds collected from living and deceased humans:

- Geranyl acetone
- Heptadecane
- Octanoic acid
- Phenol
- Pentadecane
- Decanal
- Benzoic acid, methyl ester
- Tetradecane
- 1-Octanol
- 2-2-Methoxyethoxy ethanol
- Nonanal
- Benzaldehyde
- 2-Ethyl-1-hexanol
- Tridecane
- 6-Methyl-5-hepten-2-one
- 1,2,3-Trimethyl benzene
- Undecane
- Styrene
- o-Xylene
- Toluene

Changes in odor

- Changes in odor profile
 - With time or storage condition
 - Examples:
 - Explosives: HMTD
 - Human odor: decomposition / blood
 - With formulation or brand
 - Examples:
 - Explosives
 - Narcotics
- Need to be aware and train appropriately
 - Consider how the canine generalizes / discriminates like odors
 - May need multiple training aids
Changes in odor

- Changes in odor profile - HMTD
- With time, storage condition, and formulation

Changes in odor

- Changes in odor profile - HMTD
- With time, storage condition, and formulation

Changes in odor

- Changes in odor profile – Blood (human decomp)

Field conditions

- Available odor concentration may be reduced / increased by:
 - Temperature, humidity
 - Absorption - wrapping, packaging, etc.
 - Odor transport – through soil, through container, etc.
Field conditions

- Available odor concentration may be reduced / increased by:
 - **Temperature, humidity**

Ammonium nitrate vapor composition changes!

- \(\text{NH}_3 : \text{HNO}_3 \) in vapor is highly humidity dependent
 - **Dry air**: \(\text{NH}_3 \approx \text{HNO}_3 \)
 - **Humidified air**
 - Initially \(\text{NH}_3 > \text{HNO}_3 \)
 - \(\text{NH}_3 \) decays slowly while \(\text{HNO}_3 \) remains steady
 - **New exposure to humidified air renews cycle**
 - **AN deliquesces (>62% RH at 25°C)**
Field conditions

- Odor transport
 - Burial of target may not only reduce odor, but also change scent picture
 - Transport properties of odorants may differ
 - Example: TNT buried in sand
 - 0.1 g TNT buried in 39 g sand, in vial
 - Both TNT and 2,4-DNT were detected
 - Ratio of TNT to 2,4-DNT changed with time

![Graph showing transport of explosives](https://example.com/graph.png)

Figure 3. TNT and 2,4-DNT vapor concentration in headspace from TNT buried in sand at different times after the mixture was. TNT values have been multiplied by a factor of 50 for visualization purposes.
Field conditions

- Absorption to surfaces
 - Wrapping / surfaces may absorb odor
 - Example: TNT with materials commonly associated with landmines
 - TNT bonds to some surfaces more strongly than to others

Surface adsorption and retention of TNT vapors

Edward J. Poziomek, and Saeed H. Alimeer

Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529-0126

Part of the SPIE Conference on Enforcement and Security Technologies
Boston, Massachusetts ● November 1998
SPIE Vol. 3575 ● 0277-786X/98/$10.00

![Graph showing desorption of TNT deposited on surfaces from the vapor state](image-url)

FIG. 4. IMS analysis of TNT adsorbed on various surfaces from the vapor state using 250 ng TNT in the vapor generator/collector system.
Improving detection through science

- Understand odor profile
- Understand how odor profile changes
- Encourage generalization across variants of a single target
 - Canines trained only a single variation of a target, might not detect other variations in target
 - May need multiple training aids
- Consider field conditions

When given the chance to train with new conditions or variants...take it!
Knowledge gaps???

• Project: “Canine Research – Past, Present, Future; An Analysis of Gaps and User Needs”
 • Where are the knowledge gaps in canine detection?
 • To include detection of explosives, narcotics, human remains, and human tracking
 • Related research in veterinary and behavioral sciences
 • Research gaps?
 • Operational needs?
 • Average cost of research?

• To contribute:

lauryn.degreeff@nrl.navy.mil
Thank you!

Acknowledgements:

Funding and support:

• Office of Naval Research
• Jerome and Isabel Karle Fellowship